Fourier Transform over S_n 0000000

Graphs

Postdoc Discovers One Weird Fourier Trick for Combinatorial Data

Graph theorists hate him!

tom denton

York University and the Fields Institute Toronto, Canada

A Friday Morning in Montreal

Fourier Transform over S_n 0000000

Graphs

Usual Fourier Transform

- Time Domain: Function $f: S^1 \to \mathbb{C}$.
- Frequency Domain: Fourier transform $\hat{f} = (\dots, \hat{f}_{-1}, \hat{f}_0, \hat{f}_1, \hat{f}_2, \dots).$
- Extremely useful: Frequency domain often has simpler structure, and some operations become very easy. (Convolution, etc.)

• We call f **band-limited** if all but a few of the coefficients \hat{f}_i are zero.

Fourier Transforms, Band Limitation $0 \bullet 0$

Fourier Transform over S_n 0000000

Graphs

Band Limited Functions

• Noise:

• Music:

Fourier Transforms, Band Limitation $\circ \circ \bullet$

Fourier Transform over S_n 0000000

Graphs

Usage in Machine Learning

It is often easier to find structural differences (ie, learn) in frequency space.

- Metallica vs Mozart: Time Domain
- Metallica vs Mozart: Frequency Domain

Fourier Transform over S_n •0000000 Graphs

Fourier Transforms over S_n

Take $f : S_n \to \mathbb{C}$. Choose a representation ρ of S_n ; in particular, $\rho(\sigma)$ is a matrix for any $\sigma \in S_n$.

Definition

The Fourier transform of f at ρ is the matrix:

$$\hat{f}_{
ho} := \sum_{\sigma \in S_n} f(\sigma)
ho(ext{sigma}).$$

For the FT at an irreducible representation ρ_{λ} , we write \hat{f}_{λ} .

Properties of S_n Fourier Transform

- Fourier Inversion Theorem: For a collection $\{\rho_{\lambda}\}$ of irreducible representations of S_n , the collection of \hat{f}_{λ} give a complete description of f.
- Mean value is given by trivial representation. Constant functions have $\hat{c}_{\lambda} = 0$ in all but trivial component.
- Plancharel Formula exists.
- Convolution is easy in 'frequency space:'

$$\widehat{f \ast g} = \widehat{f}\widehat{g}.$$

• Translation: Set $f^{\pi}(\sigma) := f(\pi^{-1}\sigma)$. Then:

$$\widehat{f^{\pi}} = \rho(\pi)\widehat{f}.$$

Fourier Transform over S_n 0000000

Graphs 000000

Noise

Fourier transform of a randomly generated function on S_4 .

'Time'			
sage: f			
[0.434977836537475*[1,			
0.392063492238919*[1,			
0.521516704615953*[1,			
0.579389780448483*[1,			
0.523673497481391*[1,			
0.437116226899831*[1,			
0.940504932065627*[2,			
0.112353444528742*[2,			
0.323783686524932*[2,			
0.587326505347836*[2,			1],
0.650670380618791*[2,			3],
0.955910936983525*[2,			1],
0.601537158504575*[3,			4],
0.794394823511594*[3,			2],
0.679884674700317*[3.	2.		41.
0.592560066726996*[3,	2,	4,	11,
0.446587863295809*[3.			
0.663383056294419*[3.			
0.973295975527333*[4,			
0.417614417812606*[4,			
0.193123698781817*[4,			
0.0491074958654644*[4	. 2		. 11.
0.701972353428726*[4.			
0.182927737939954*[4,			

'Frequency'

	irr.keys(): prim	it lam, '\n',	<pre>matrix(irr[lam]),</pre>	
[1, 1, 1, 1]				
[-2.25844652968]				
F41				
[9.38378872464]				
[3, 1]				
[-0.635195612906	0.594839310665	-0.372979286		
0.487581803321	-0.392255077964	0.36462945	528]	
[-0.695137662289	-1.29950187318	-1.168370720	065]	
[2, 2]				
	-0.19122721850			
[0.446283890917	0.0012895149185	8]		
[2, 1, 1]				
	0.523357218317	0.505581181	1521	
	-0.516668991817	0.265599994		
0.949840006734	-2.21664192545	1,16340179	9551	

Table 1: Fourier transform of a noisy function.

Fourier Transform over S_n 0000000 Graphs

Music!

Consider the length function on S_n . Set:

$$f:=\sum l(\sigma)\sigma$$

'Time' (n=4)	'Frequency' (n=6)
$ \begin{array}{c} 1 1 2 \\ [0, \\ (1, 2, 4, 3), \\ (11, 3, 2, 4), \\ 2^{4}(1, 3, 4, 2), \\ 2^{4}(1, 4, 2, 3), \\ 3^{4}(1, 4, 3, 2), \\ (2, 1, 3, 4), \\ 2^{4}(2, 1, 4, 3), \\ 2^{4}(2, 1, 4, 4), \\ 2^{4}(2, 3, 4, 4), \\ 3^{4}(2, 3, 4, 1), \\ 3^{4}(2, 4, 3), \\ 3^{4}(2, 4, 1, 3), \end{array} $	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{bmatrix} 4, \ 1, \ 1 \end{bmatrix} \\ \begin{bmatrix} -12, \ 0 \ -8, \ 49 \ -14, \ 7 \ -6, \ 57 \ -11, \ 38 \ -16, \ 1 \ -5, \ 37 \ -9, \ 3 \ -13, \ 15 \ -16, \ 97 \end{bmatrix} \\ \begin{bmatrix} -8, \ 49 \ -6, \ 0 \ -10, \ 39 \ -4, \ 65 \ -8, \ 05 \ -11, \ 38 \ -3, \ 79 \ -6, \ 57 \ -9, \ 3 \ -12, \ 01 \end{bmatrix} \\ \begin{bmatrix} -8, \ 49 \ -6, \ 0 \ -10, \ 39 \ -4, \ 65 \ -8, \ 05 \ -11, \ 38 \ -3, \ 77 \ -9, \ 3 \ -12, \ 01 \end{bmatrix} \\ \begin{bmatrix} -14, \ 7 \ -10, \ 39 \ -18, \ 0 \ -8, \ 58 \ -13, \ 94 \ -19, \ 72 \ -6, \ 57 \ -11, \ 38 \ -16, \ 1 \ -20, \ 78 \end{bmatrix} \\ \begin{bmatrix} -6, \ 57 \ -4, \ 65 \ -8, \ 05 \ -13, \ 94 \ -19, \ 72 \ -6, \ 57 \ -11, \ 38 \ -16, \ 1 \ -72, \ 78 \ -72 \ -9, \ 3 \ -14, \ 78 \ -72 \ -9, \ 38 \ -12, \ 78 \ -72 \ -9, \ 78 \ -72 \ -9, \ 78 \ -72 \ -9, \ 78 \ -72 \ -7$
5*[4, 2, 3, 1], 5*[4, 3, 1, 2], 6*[4, 3, 2, 1]]	$ \begin{bmatrix} -9,3 & -6.57 & -11.38 & -5.09 & -8.82 & -12.47 & -4.16 & -7.2 & -10.18 & -13.15] \\ [-13.15 & -9.3 & -16.1 & -7.2 & -12.47 & -17.64 & -5.88 & -10.18 & -14.4 & -18.59] \\ [-16.97 & -12.0 & -20.78 & -9.3 & -16.1 & -22.77 & -7.59 & -13.15 & -18.59 & -24.0] \\ \end{bmatrix} $

Table 2: Fourier transform of a musical function.

All other $\hat{f}_{\lambda} = 0!$

Fast Fourier Transform on S_n

- Early 1990's: Clausen develops FFT over S_n .
- Uses embedding of S_{n-1} in S_n ,
- Young's Seminormal/Orthogonal representation, and
- Branching of partitions in Young's lattice.

$$\hat{f}_{\lambda} = \sum_{\sigma \in S_n} f(\sigma) \rho_{\lambda}(\sigma)$$

$$= \sum_{k=1}^n \sum_{\tau \in S_{n-1}} f(g_{k,n}\tau) \rho_{\lambda}(g_{k,n}\tau)$$

$$= \sum_{k=1}^n \rho_{\lambda}(g_{k,n}) \sum_{\tau \in S_{n-1}} f(g_{k,n}\tau) \rho_{\lambda}(\tau)$$

Fourier Transform over S_n 00000000 Graphs

Fast Fourier Transform on $S_n \amalg$

- Then FFT over S_n can be written as a sum of FFT's over S_{n-1} .
- Furthermore, restriction to S_{n-1} is a 'twisted' block diagonal matrix, with blocks given by down-set of λ:

$$\rho_{\lambda}(g_{k,n})\sum_{\tau\in S_{n-1}}f(g_{k,n}\tau)\rho_{\lambda}(\tau)=\rho_{\lambda}(g_{k,n})\sum_{\tau\in S_{n-1}}\bigoplus_{\mu}f(g_{k,n}\tau)\rho_{\mu}(\tau)$$

- Efficient Algorithm: Roughly speaking, simultaneously sort all permutations, progressively building matrices for f at level S_{k+1} from matrices at level S_k.
- Uses O(n!) memory, and approximately $O(n!n^3)$ time. (Clausen '93)

Band Restriction and the FFT

- Recall that constant functions are zero in all but trivial component.
- Then if a function h is constant on (say) S_{n-2} , its Fourier transform on restriction to S_{n-2} is zero away from the trivial component.
- Start from this trivial component, induct up twice to get the full set of non-zero components of \hat{h} .
- Set $h_{i,j}(\sigma) = 1$ if σ has an inversion at (i, j), and $h_{i,j}(\sigma) = 0$ otherwise.
- Then $h_{n-1,n}$ is constant on S_{n-2} , so band restricted.
- But all of the $h_{i,j}$ are *translations* of $h_{n-1,n}$. Then:

$$\widehat{h_{i,j}} = \rho(\pi)\widehat{h_{n-1,n}}.$$

Thus, $h_{i,j}$ is band-restricted as well.

Fourier Transform over S_n 0000000 Graphs

Theorem for Length Function

Theorem (D?)

The length function is band-restricted. In particular, the only non-zero components are those associated to the partitions (n), (n-1,1), and (n-2,1,1). The length function's Fourier transform can be computed in $O(n^5)$ time, and stored with $O(n^2)$ memory.

Note: Conceivably, could have non-zero coefficients in $\lambda = (n - 2, 2)$, but this ends up also being zero.

Similar theorems are easily written for a wide variety of interesting combinatorial statistics, including maj, number of peaks, number of descents, noninv(k) for fixed k, and more.

Encoding Graphs in $\mathbb{Z}S_n$

Cosider a labeled graph G with adjacency matrix A. Set :

 $f_G(\sigma) = A_{\sigma(n-1),\sigma(n)}.$

- Then f_G completely encodes the adjacency matrix of G, and is constant on S_{n-2} ; thus, severely band-restricted.
- Can compute the Fourier transform of f_G in $O(n^3)$ time (Kondar, 2008).
- Relabeling G with π induces a translation of f_G by π.
 Orthogonal representation gives *power invariants*:

$\hat{f}^t \hat{f}$.

These are graph invariants, due to the translation property of the FT.

• Similar games yield many other invariants.

Fourier Transform over S_n 0000000

Graphs 000000

What are these invariants?

For graphs on *n* vertices, consider the variables $X = \{x_{i,j}\}$ with $1 \le i \ne j \le n$ with action of the symmetric group:

$$\sigma \cdot x_{i,j} = x_{\sigma(i),\sigma(j)}.$$

- Form polynomials p(X)...
- Then we can evaluate at a graph p(G) by plugging in entries from the adjacency matrix.
- The symmetric group action is graph relabeling.
- Symmetrize a polynomial by Reynold's operator

$$R(p) = \sum_{\sigma} \sigma \cdot p(X).$$

Fourier Transform over S_n 00000000

Algebra of graph invariants

- The symmetric functions in the variables *X* = {*x*_{*i*,*j*}} calculate invariants of unlabeled graphs.
- Introduce extra relation $x_{i,j}^2 = x_{i,j}$ to get a finite dimensional algebra B_n^* .
- Dimension of B_n^* is number of unlabeled graphs on *n* vertices, graded by number of edges.
- Can encode basically every hard problem in graph theory as polynomials in B_n^* .
- Example: Set m_G = R(∏ x_{i,j}) for (i, j) ∈ E(G).
 Then m_G(H) counts embeddings of G into H.
 Take G = C_n to count Hamiltonian cycles. NP-complete!

Fourier transform?

- Fourier transform gives a way to efficiently *evaluate* certain collections of invariants.
- For two functions f, g ∈ C[S_n] (not symmetric), take invariant product:

$$f \odot g(\sigma) = \sum_{\tau \in S_n} f(\tau \sigma) g(\tau).$$

• Then $\widehat{f \odot g} = \hat{f}^t \hat{g}$, translation invariants.

Can form f, g from any matrix associated to graph G: Powers of adjacency matrix, all-pairs-shortest-lengths, etc.
These f^tg are evaluations of symmetric polynomials in B^{*}_n.

Fourier Transform over S_n 00000000

Upshot

- The Fourier transform allows us to mix and match cheap invariants using simple matrix operations.
- The invariant product is algebraically different from addition, multiplication in B_n^* : Get interesting (or at least non-trivial) invariants.
- (Kondar, Borgwaldt) This is actually useful for machine learning problems involving weighted graphs.
 'Skew spectrum' is a collection of 49 invariants derived in this way; outperforms established feature sets for chemical data in three out of four tests.

Questions

- Numerous obvious directions for generalization.
- Symmetric functions on species?
- Integer eigenvalue mysteries...
- The algebras B_n^* and relatives are grossly understudied. I want:
 - Free generators for B_∞ indexed by connected graphs on k edges,
 - Hall inner product,
 - Polynomial-time evaluation of algebraic generators for B_n^* ,
 - A pony.

Fourier Transform over S_n 00000000

Graphs 000000

Questions