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Usual Fourier Transform

Time Domain: Function f : S1 → C.

Frequency Domain: Fourier transform
f̂ = (. . . , f̂−1, f̂0, f̂1, f̂2, . . .).

Extremely useful: Frequency domain often has simpler
structure, and some operations become very easy.
(Convolution, etc.)

We call f band-limited if all but a few of the coefficients f̂i
are zero.
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Band Limited Functions

Noise:

Music:
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Usage in Machine Learning

It is often easier to find structural differences (ie, learn) in
frequency space.

Metallica vs Mozart: Time Domain

Metallica vs Mozart: Frequency Domain
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Fourier Transforms over Sn

Take f : Sn → C.
Choose a representation ρ of Sn; in particular, ρ(σ) is a matrix for
any σ ∈ Sn.

Definition

The Fourier transform of f at ρ is the matrix:

f̂ρ :=
∑
σ∈Sn

f (σ)ρ(sigma).

For the FT at an irreducible representation ρλ, we write f̂λ.
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Properties of Sn Fourier Transform

Fourier Inversion Theorem: For a collection {ρλ} of
irreducible representations of Sn, the collection of f̂λ give a
complete description of f .

Mean value is given by trivial representation. Constant
functions have ĉλ = 0 in all but trivial component.

Plancharel Formula exists.

Convolution is easy in ’frequency space:’

f̂ ∗ g = f̂ ĝ .

Translation: Set f π(σ) := f (π−1σ). Then:

f̂ π = ρ(π)f̂ .
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Noise

Fourier transform of a randomly generated function on S4.

‘Time’ ‘Frequency’

Table 1: Fourier transform of a noisy function.
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Music!

Consider the length function on Sn. Set:

f :=
∑

l(σ)σ

‘Time’ (n=4) ‘Frequency’ (n=6)

Table 2: Fourier transform of a musical function.

All other f̂λ = 0!
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Fast Fourier Transform on Sn

Early 1990’s: Clausen develops FFT over Sn.

Uses embedding of Sn−1 in Sn,

Young’s Seminormal/Orthogonal representation, and

Branching of partitions in Young’s lattice.

f̂λ =
∑
σ∈Sn

f (σ)ρλ(σ)

=
n∑

k=1

∑
τ∈Sn−1

f (gk,nτ)ρλ(gk,nτ)

=
n∑

k=1

ρλ(gk,n)
∑

τ∈Sn−1

f (gk,nτ)ρλ(τ)
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Fast Fourier Transform on Sn II

Then FFT over Sn can be written as a sum of FFT’s over
Sn−1.

Furthermore, restriction to Sn−1 is a ‘twisted’ block diagonal
matrix, with blocks given by down-set of λ:

ρλ(gk,n)
∑

τ∈Sn−1

f (gk,nτ)ρλ(τ) = ρλ(gk,n)
∑

τ∈Sn−1

⊕
µ

f (gk,nτ)ρµ(τ)

Efficient Algorithm: Roughly speaking, simultaneously sort all
permutations, progressively building matrices for f̂ at level
Sk+1 from matrices at level Sk .

Uses O(n!) memory, and approximately O(n!n3) time.
(Clausen ’93)
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Band Restriction and the FFT

Recall that constant functions are zero in all but trivial
component.

Then if a function h is constant on (say) Sn−2, its Fourier
transform on restriction to Sn−2 is zero away from the trivial
component.

Start from this trivial component, induct up twice to get the
full set of non-zero components of ĥ.

Set hi ,j(σ) = 1 if σ has an inversion at (i , j), and hi ,j(σ) = 0
otherwise.

Then hn−1,n is constant on Sn−2, so band restricted.

But all of the hi ,j are translations of hn−1,n. Then:

ĥi ,j = ρ(π)ĥn−1,n.

Thus, hi ,j is band-restricted as well.
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Theorem for Length Function

Theorem (D?)

The length function is band-restricted. In particular, the only
non-zero components are those associated to the partitions (n),
(n − 1, 1), and (n − 2, 1, 1).
The length function’s Fourier transform can be computed in O(n5)
time, and stored with O(n2) memory.

Note: Conceivably, could have non-zero coefficients in
λ = (n − 2, 2), but this ends up also being zero.

Similar theorems are easily written for a wide variety of interesting
combinatorial statistics, including maj, number of peaks, number
of descents, noninv(k) for fixed k, and more.
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Encoding Graphs in ZSn
Cosider a labeled graph G with adjacency matrix A. Set :

fG (σ) = Aσ(n−1),σ(n).

Then fG completely encodes the adjacency matrix of G , and is
constant on Sn−2; thus, severely band-restricted.

Can compute the Fourier transform of fG in O(n3) time
(Kondar, 2008).

Relabeling G with π induces a translation of fG by π.
Orthogonal representation gives power invariants:

f̂ t f̂ .

These are graph invariants, due to the translation property of
the FT.

Similar games yield many other invariants.
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What are these invariants?

For graphs on n vertices, consider the variables X = {xi ,j} with
1 ≤ i 6= j ≤ n with action of the symmetric group:

σ · xi ,j = xσ(i),σ(j).

Form polynomials p(X ). . .

Then we can evaluate at a graph p(G ) by plugging in entries
from the adjacency matrix.

The symmetric group action is graph relabeling.

Symmetrize a polynomial by Reynold’s operator

R(p) =
∑
σ

σ · p(X ).
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Algebra of graph invariants

The symmetric functions in the variables X = {xi ,j} calculate
invariants of unlabeled graphs.

Introduce extra relation x2i ,j = xi ,j to get a finite dimensional
algebra B∗n .

Dimension of B∗n is number of unlabeled graphs on n vertices,
graded by number of edges.

Can encode basically every hard problem in graph theory as
polynomials in B∗n .

Example: Set mG = R(
∏

xi ,j) for (i , j) ∈ E (G ).
Then mG (H) counts embeddings of G into H.
Take G = Cn to count Hamiltonian cycles. NP-complete!
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Fourier transform?

Fourier transform gives a way to efficiently evaluate certain
collections of invariants.

For two functions f , g ∈ C[Sn] (not symmetric), take
invariant product:

f � g(σ) =
∑
τ∈Sn

f (τσ)g(τ).

Then f̂ � g = f̂ t ĝ , translation invariants.

Can form f , g from any matrix associated to graph G :
Powers of adjacency matrix, all-pairs-shortest-lengths, etc.

These f̂ t ĝ are evaluations of symmetric polynomials in B∗n .
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Upshot

The Fourier transform allows us to mix and match cheap
invariants using simple matrix operations.

The invariant product is algebraically different from addition,
multiplication in B∗n : Get interesting (or at least non-trivial)
invariants.

(Kondar, Borgwaldt) This is actually useful for machine
learning problems involving weighted graphs.
‘Skew spectrum’ is a collection of 49 invariants derived in this
way; outperforms established feature sets for chemical data in
three out of four tests.
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Questions

Numerous obvious directions for generalization.

Symmetric functions on species?

Integer eigenvalue mysteries. . .

The algebras B∗n and relatives are grossly understudied.
I want:

Free generators for B∞ indexed by connected graphs on k
edges,
Hall inner product,
Polynomial-time evaluation of algebraic generators for B∗n ,
A pony.
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Questions
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