Postdoc Discovers One Weird Fourier Trick for Combinatorial Data Graph theorists hate him!

tom denton

York University and the Fields Institute
Toronto, Canada

A Friday Morning in Montreal

Usual Fourier Transform

- Time Domain: Function $f: S^{1} \rightarrow \mathbb{C}$.
- Frequency Domain: Fourier transform $\hat{f}=\left(\ldots, \hat{f}_{-1}, \hat{f}_{0}, \hat{f}_{1}, \hat{f}_{2}, \ldots\right)$.
- Extremely useful: Frequency domain often has simpler structure, and some operations become very easy. (Convolution, etc.)
- We call f band-limited if all but a few of the coefficients \hat{f}_{i} are zero.

Band Limited Functions

- Noise:

- Music:

Usage in Machine Learning

It is often easier to find structural differences (ie, learn) in frequency space.

- Metallica vs Mozart: Time Domain

- Metallica vs Mozart: Frequency Domain

Fourier Transforms over S_{n}

Take $f: S_{n} \rightarrow \mathbb{C}$.
Choose a representation ρ of S_{n}; in particular, $\rho(\sigma)$ is a matrix for any $\sigma \in S_{n}$.

Definition

The Fourier transform of f at ρ is the matrix:

$$
\hat{f}_{\rho}:=\sum_{\sigma \in S_{n}} f(\sigma) \rho(\text { sigma }) .
$$

For the FT at an irreducible representation ρ_{λ}, we write \hat{f}_{λ}.

Properties of S_{n} Fourier Transform

- Fourier Inversion Theorem: For a collection $\left\{\rho_{\lambda}\right\}$ of irreducible representations of S_{n}, the collection of \hat{f}_{λ} give a complete description of f.
- Mean value is given by trivial representation. Constant functions have $\hat{c}_{\lambda}=0$ in all but trivial component.
- Plancharel Formula exists.
- Convolution is easy in 'frequency space:'

$$
\widehat{f * g}=\hat{f} \hat{g}
$$

- Translation: Set $f^{\pi}(\sigma):=f\left(\pi^{-1} \sigma\right)$. Then:

$$
\widehat{f^{\pi}}=\rho(\pi) \hat{f}
$$

Noise

Fourier transform of a randomly generated function on S_{4}.

‘Time’

Table 1: Fourier transform of a noisy function.

Music!

Consider the length function on S_{n}. Set:

$$
f:=\sum I(\sigma) \sigma
$$

Tinne	$(n=4)$
f	
[0,	
$[1,2,4,3]$,	
$[1,3,2,4]$,	
$2 *[1,3,4,2]$,	
2*[1, 4, 2, 3],	
3*[1, 4, 3, 2].	
$[2,1,3,4]$,	
2*[2, 1, 4, 3],	
2*[2, 3, 1, 4],	
3*[2, 3, 4, 1],	
3* $[2,4,1,3]$,	
$4^{*}[2,4,3,1]$,	
$2 *[3,1,2,4]$,	
$3 *[3,1,4,2]$,	
$3 *[3,2,1,4]$,	
4*[3, 2, 4, 1].	
$4^{*}[3,4,1,2]$,	
5*[3, 4, 2, 1],	
$3 *[4,1,2,3]$,	
$4 *[4,1,3,2]$,	
4*[4, 2, 1, 3],	
$5^{*}[4,2,3,1]$,	
5*[4, 3, 1, 2],	
6*[4, 3, 2, 1]]	

'Frequency' ($\mathrm{n}=6$)

Table 2: Fourier transform of a musical function.
All other $\hat{f}_{\lambda}=0!$

Fast Fourier Transform on S_{n}

- Early 1990's: Clausen develops FFT over S_{n}.
- Uses embedding of S_{n-1} in S_{n},
- Young's Seminormal/Orthogonal representation, and
- Branching of partitions in Young's lattice.

$$
\begin{aligned}
\hat{f}_{\lambda} & =\sum_{\sigma \in S_{n}} f(\sigma) \rho_{\lambda}(\sigma) \\
& =\sum_{k=1}^{n} \sum_{\tau \in S_{n-1}} f\left(g_{k, n} \tau\right) \rho_{\lambda}\left(g_{k, n} \tau\right) \\
& =\sum_{k=1}^{n} \rho_{\lambda}\left(g_{k, n}\right) \sum_{\tau \in S_{n-1}} f\left(g_{k, n} \tau\right) \rho_{\lambda}(\tau)
\end{aligned}
$$

Fast Fourier Transform on S_{n} II

- Then FFT over S_{n} can be written as a sum of FFT's over S_{n-1}.
- Furthermore, restriction to S_{n-1} is a 'twisted' block diagonal matrix, with blocks given by down-set of λ :

$$
\rho_{\lambda}\left(g_{k, n}\right) \sum_{\tau \in S_{n-1}} f\left(g_{k, n} \tau\right) \rho_{\lambda}(\tau)=\rho_{\lambda}\left(g_{k, n}\right) \sum_{\tau \in S_{n-1}} \bigoplus_{\mu} f\left(g_{k, n} \tau\right) \rho_{\mu}(\tau)
$$

- Efficient Algorithm: Roughly speaking, simultaneously sort all permutations, progressively building matrices for \hat{f} at level S_{k+1} from matrices at level S_{k}.
- Uses $O(n!)$ memory, and approximately $O\left(n!n^{3}\right)$ time. (Clausen '93)

Band Restriction and the FFT

- Recall that constant functions are zero in all but trivial component.
- Then if a function h is constant on (say) S_{n-2}, its Fourier transform on restriction to S_{n-2} is zero away from the trivial component.
- Start from this trivial component, induct up twice to get the full set of non-zero components of \hat{h}.
- Set $h_{i, j}(\sigma)=1$ if σ has an inversion at (i, j), and $h_{i, j}(\sigma)=0$ otherwise.
- Then $h_{n-1, n}$ is constant on S_{n-2}, so band restricted.
- But all of the $h_{i, j}$ are translations of $h_{n-1, n}$. Then:

$$
\widehat{h_{i, j}}=\rho(\pi) \widehat{h_{n-1, n}} .
$$

Thus, $h_{i, j}$ is band-restricted as well.

Theorem for Length Function

Theorem (D?)

The length function is band-restricted. In particular, the only non-zero components are those associated to the partitions (n), ($n-1,1$), and ($n-2,1,1$).
The length function's Fourier transform can be computed in $O\left(n^{5}\right)$ time, and stored with $O\left(n^{2}\right)$ memory.

Note: Conceivably, could have non-zero coefficients in $\lambda=(n-2,2)$, but this ends up also being zero.

Similar theorems are easily written for a wide variety of interesting combinatorial statistics, including maj, number of peaks, number of descents, noninv(k) for fixed k, and more.

Encoding Graphs in $\mathbb{Z} S_{n}$

Cosider a labeled graph G with adjacency matrix A. Set :

$$
f_{G}(\sigma)=A_{\sigma(n-1), \sigma(n)} .
$$

- Then f_{G} completely encodes the adjacency matrix of G, and is constant on S_{n-2}; thus, severely band-restricted.
- Can compute the Fourier transform of f_{G} in $O\left(n^{3}\right)$ time (Kondar, 2008).
- Relabeling G with π induces a translation of f_{G} by π. Orthogonal representation gives power invariants:

$$
\hat{f}^{t} \hat{f}
$$

These are graph invariants, due to the translation property of the FT.

- Similar games yield many other invariants.

What are these invariants?

For graphs on n vertices, consider the variables $X=\left\{x_{i, j}\right\}$ with $1 \leq i \neq j \leq n$ with action of the symmetric group:

$$
\sigma \cdot x_{i, j}=x_{\sigma(i), \sigma(j)} .
$$

- Form polynomials $p(X) \ldots$
- Then we can evaluate at a graph $p(G)$ by plugging in entries from the adjacency matrix.
- The symmetric group action is graph relabeling.
- Symmetrize a polynomial by Reynold's operator

$$
R(p)=\sum_{\sigma} \sigma \cdot p(X) .
$$

Algebra of graph invariants

- The symmetric functions in the variables $X=\left\{x_{i, j}\right\}$ calculate invariants of unlabeled graphs.
- Introduce extra relation $x_{i, j}^{2}=x_{i, j}$ to get a finite dimensional algebra B_{n}^{*}.
- Dimension of B_{n}^{*} is number of unlabeled graphs on n vertices, graded by number of edges.
- Can encode basically every hard problem in graph theory as polynomials in B_{n}^{*}.
- Example: Set $m_{G}=R\left(\prod x_{i, j}\right)$ for $(i, j) \in E(G)$.

Then $m_{G}(H)$ counts embeddings of G into H.
Take $G=C_{n}$ to count Hamiltonian cycles. NP-complete!

Fourier transform?

- Fourier transform gives a way to efficiently evaluate certain collections of invariants.
- For two functions $f, g \in \mathbb{C}\left[S_{n}\right]$ (not symmetric), take invariant product:

$$
f \odot g(\sigma)=\sum_{\tau \in S_{n}} f(\tau \sigma) g(\tau)
$$

- Then $\widehat{f \odot g}=\hat{f}^{t} \hat{g}$, translation invariants.
- Can form f, g from any matrix associated to graph G : Powers of adjacency matrix, all-pairs-shortest-lengths, etc.
- These $\hat{f}^{t} \hat{g}$ are evaluations of symmetric polynomials in B_{n}^{*}.

Upshot

- The Fourier transform allows us to mix and match cheap invariants using simple matrix operations.
- The invariant product is algebraically different from addition, multiplication in B_{n}^{*} : Get interesting (or at least non-trivial) invariants.
- (Kondar, Borgwaldt) This is actually useful for machine learning problems involving weighted graphs.
'Skew spectrum' is a collection of 49 invariants derived in this way; outperforms established feature sets for chemical data in three out of four tests.

Questions

- Numerous obvious directions for generalization.
- Symmetric functions on species?
- Integer eigenvalue mysteries...
- The algebras B_{n}^{*} and relatives are grossly understudied. I want:
- Free generators for B_{∞} indexed by connected graphs on k edges,
- Hall inner product,
- Polynomial-time evaluation of algebraic generators for B_{n}^{*},
- A pony.

Questions

